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Abstract

Since most real-wor]d applications of classifica-
tion learning involve continuous-valued attributes,
properly addressing the discretization process isan
important problem. This paper addresses the usc
of the entropy minimizati on heuristic {or discretiz-
ing the range of a continuous-valued ay(ribute into
multiple intervals. We briefly present theoretical
evidence for the appropriateness of this heuristic
foruse in the binary discretization agorithm used
in1D3, C4, CART, and other learning algorithms.
The results serve to justify extending the algorithm
to derive multiple intervals. We formally derive a
criterion based on the minimum description length
principle for deciding the partitioning of intervals.
We demonstrate viaempirical evaluation on several
real-worlcl data setsthat better decision trees are ob-
tained using the new nlulti-inter’ val algorithm.

1 Introduction

Classificatio n learning algorithms typically use heuristics to
guide the.ir seal-ch through the large space of possible relat ions
between combinations of attribute values and classes. Onc
such heat’idlic uscs the notion of selecting attributes locally
minimizing the information entropy of the classes in a data set
(cf. the IN3 agorithm[131 and itsextensions, e.g. GID3 [21,
GID 3# [5),and C4 [15], CART | 1], CN2 [3] and others). Scc
[11; 5; 6] for a general discussion of the attribute selection
problem.

The attributes in alearning problem may be nominal (cat-
egorical), or they may be continuous (numerical). The term
“continuous” is used in the literature to refer to attributes
taking on numerical values (integer or real); or in genera
an attribute with a linearly ordered range of values. The
above. mentioned attribute selection process assumes that all
attributes are nominal. Continuous-valued attributes arc dis-
cretized prior to selection, typical ly by partitioning the range
of the attribute into subranges. in.gmcral, a discretization is
simply alogical condition, in terms of one or more. attributes,
thatserves to partition the data into at least two subsets.

In this paper, wc focus only on the discretization of
continuous-valued attributes. We first prc.sent a resultabout
the, i nformation entropy Minimization heuristic for binary dis-
cretization (two-interval splits). This gives ys:

o abetter understanding of the heuristic and its behavior,

Keki B. Irani
FHECS Department
The University of Michigan
Ann Arbor, M1 48109-2122, U.SA.

o formal evidence that supports the usage of the heuristic

inthis context, and

« again in computational efficiency that results in speeding

upthecvaluation process Tor continuous-valyed attribute
discretizat ion.

Woc thenproceed to extend the alporithmto divide the range
of acontinuous-valued attribute into multiple intervals rather
than just two. We first motivate the need for such a capabil-
ity, then we present the multiple interval generalization, anti
finally we present the empirical evaluation results confirming
that the new capability docs indeed result in producing better
decision trees.

2 Binary Discretization

A continuous-valued attribute is typically discretized during
decision trec generation by parlitioning its range into two
intervals. A threshold valuc, 7', for the continuous -valued
attribute 4 js determined, and the test A <7 is assigned to
the leftbranch while A > 7'is assigned to the right branch!.
We call such a threshold value, T', a cut point. "This method
for selecting acat point is used in the 1D3 | 13] algorithm and
its variants such as GI1D3* [51, in the CAR'T algorithm [II,
and others [81. It can generally be used in any algorithm for
learning, classification trees or rules that handles continuous-
valuedattributes by quantizing their ranges into two intervals.
Althoughthe results we present arc applicable to discretizat ion
in general, they are presented in the particular context of top-
down decision tree generation.

Assume we arc to select an attribute for branching a anode
having a set S of N examples. Vor cach continuous-valued
attribute Awe gelect tim’’best’” cut point 7’4 from its range of
values by evaluating every candidate cut point in the range of
values. The examples arc first sorted by increasing value of
the at tribute A, and the midpoint between each successive pair
of examples 1N the sorted sequence is evaluated as a potential
cut point. Thus, for each continuous- valued giribute, N - 1
evaluations will take place (assuming thatexamples donot
have identical attribute values). For each evaluation of a
candidate cat point 7', the data arc partitioned into two sets
and the class entropy of the resulting partiti on is computed.
Recall, that this discreti zation procedure is performed locall y
for every node i nthe tree.

Let 7' partition the set S of examples IO the subsets S
and S,. et there be k classes C), ..., Ckand let P(Ci, )

"'he test A > 1" stands for: “the valuc of A is greater than 77,
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be the proportion of examples in S that have class C;. The
class entropy of asubset Sisdefined as:

k
Eng(S) = - 21:])(Ci’ $)log(¥(Ci, S))

When the logarithm base is 2, lint(S) measures the amount
of information needed, in bits, tospecify the classesin S, ‘1b
cvaluate the resulting class entropy after aset Sispartitioned
into two sets S and Sz, we take the weighted average. of their
resulting class entropic.s:

Definition 1: For an example set S, an attribute A, and acut
value 7: 1 et S, ¢ Shethe subset of examplesin S with A-
values <7 and S>= S — §,. The ems information entropy
of the partitioninduced by 1', A’'(A, T'; S), is defined as

|S |52

L'(A, 1%S) = -|S]|ll')nt(S, ) ]S|

Ent(S;) (1)
A binary discretization for A is determined by selecting the
cut point 7’4 for which 2(A,7%4; S) is minimal amongst all
the candidate cut points.

2.1 Discussion of CutPoint Selection
One of the main problems with this selection criterion is that
it isrelatively expensive. Although it is polynomial in com-
plexity, it must be c.valuated N - 1 times for cach attribute
(assuming thatthe N examples have distinct values). Since
machine learning programs are designed to work with large
sets of training data, N is typicaly large.. In the case of a
nominal (or discretized) attribute, this criterion requires only
asingle evaluation of an r-partition, where r is the number of
values of the nomina attribute. Typically, << N. Indeed,
experience with [1X+-like algorithms confirms that the.y run
sig nificantly slower when continuous attributes arc present.
"The other objection that may be raid is that the algorithm
has an inherent weakness in it that will cause it to produce
“had” cut points especialy when there arc more than two
classes in the problem. ‘I'his objection is based on the fact
that the algorithm attempts to minimize the weighted average
entropy of the two sets in the candidate binary partition (as
shownin 1 iguationl above). The cut point may there.fore
separate examples of one classin an attempt to minimize the
average entropy. Figure 1 illustrates this situation. instead of
faling on one of the boundaries Blor B2, the cut point may
fal in between so that the average. entropy of both sides is
minimized. This would be undesirable since it unnecessarily
separates examples of the same class, resulting in larger (and
lower quaity |5]) trees.

However, neither of these objections turns out to be true.
Theorem | below shows that regardless of how many classes
there arc, and how they arc distributed, the cut point will al-
ways recut on the boundary between two classes (see Defini-
tion 2 for a precise statement of what wc mean by aboundary
point). Thisisi ndecd a desirable properly of the heuristic
since it shows that the heuristic is “well-behaved” in terms
of the cut points it favours. It tells us that this heuristic will
never select a cut that is considered “bad” from the teleolog-
ical point of view.In addition, this result will aso help us
improve the efficiency of the. algorithm without chang ing its
function.

2,2 CutPoints Are Always on Boundarics

We show that the value 74 for attribute A that minimizes
the average class entropy F(A,7’4;S) for a training set S
must always be avalue between two examples of different
classes in the sequence of sorted examples. 1 .et A(c) denote
the. f't-value of example e ¢ s.

Definition 2: A value T in the range of Aisaboundary point
iff in the sequence of examplessorted by the Value of A, there
exist two examples ey, €2¢€ S, having different classes, such
that A(c,) < 7" < A(e2); and there exists no other example
e ¢ Ssuchthat A(e;) < A(e') < A(ea).

Theorem 1 If 7' minimizes the measure (A, T3 8), then T
is a boundary point.
Proof:is rather lengthy and thus omitted; see [51. L

Corollary 17he algorithm used by 1133 for finding abinary
partition for a continuous attribute will always partition the
data on a boundary point in the sequence of the examples
ordered by the value Of that attribute.

I'roof: Follows from Theorem 1 and definitions. [l

The first implication of Corollary 1 is that it serves to sup-
port the usage of the entropy minimization heuristic in the
context of discretization, We use the i nformat ion cat ropy
heuristic because we know, intuitively, that it possesses some
of the properties that a discrimination measure should, in
principle, possess. However, that in itself does not rulc out
possibly undesirable situations, such as that depictedin Fig-
ute 1. The Corollary states that “obviously bad” cuts are never
favoured by the heuristic. Thisresult serves as further formal
support for using the heuristic in the context of discretization,
since it tells us that the heuristic is well-bc.tlavee! from the
teleological point of view.

In addition, Corollary 1 can be used to increase the effi-
ciency of the algorithim without changing its effects at all.
After sorting the examples by the value. of the attribute A,
the agorithm need only examine the b boundary points rather
than all N - 1 candidates. Note that: 41 <b <N -1.
Since. typicaly k<< N wc expectsignificant computational
savings to result in general. We have demonstrated significant
speedups in terms of the number of potential cut points eval-
uated in [71 for the D3 algorithm. 113 partitions the range.
of a continuous-valued attribute into two intervals. Algo-
rithms that extract multiple intervals using a generalization of
this procedure (such as the one presented in the next section)
achieve higher speedups.  Algorithms that search for rules
rather than decision tree.s aso spend more effort on discretiza-
tion. The computational speedup in the evaluation processis
only a side benefit of Corollary 1. 11S semantic significance




isour focusin this paper since it justifies our generalizing the
same algorithmto generate multiple intervals rather than just
two.

3 Generalizing the Algorithm

Corollary 1 also provides support for extending the algorithm
to extract multiple intervals, rather than just two, in a single
discretizationpass.  The motivation for doing this is that
“betler” trees arc obtained?.

The training set is sorted once, then the algorithm is applied
recursively, always selecting the best cut point. A criterion is
applied to decide when to refrain from applying further binary
partitioning to agiven interval. The fact that only boundary
points are considered makes the top-down i ntcrval derivation
feasible. (since the algorithm never commits to a“bad” cut at
the top) and reduces computational effort as described earlier.

‘b properly define such an algorithm, we need to formu-
late a criterion for deciding when to refrain from partitioning
a given set of examples. The criterion needs to be well-
principled and theoretically justified. Iimpirical tests arc later
used to verify that the assumptions behind the justification are
appropriate.

Why isthe derivation of multiple ranges rather than bi-
nary ranges more advantageous from a tree gene.ration pei-
spect ive? Often, the “i nteresting” range may be an i nternal
interval within the attribute’s range. ‘' J bus, to getto such an
interval, a binary-interval-at-a-time approach leads to unnec-
essary and excessive partitioning of the examples that arc out-
side. the interval of intc.rest. For example, assume that for an
attribute A with values in [0, 40], the subrange 12 < A <20
is of interest.  Assume that A’s range is discretized into:
{(- 00,12),[12, 20), [20, 25), [25, o0)}.Given an agorithm,
like GID3* [51, that is capable of filtering out irrelevant at-
tribute. values, it isin principle possible. to obtain the decision
tree of Figure 2(a). The attribute selection algorithm decided
that only two of the four available intervals are relevant. The
cxamples outside this interval are grouped in the subset la-
beled Sin the figure.

Using only a binary interval discretization agorithm, in
order to select out these two ranges the decision tree shown
i n1‘gure 2(b) would be generated. Note that the set S is now
unnccessatily partitioned into tbe two subsets S1 and S2. For
the firsttrec, the algorithm has the option of partitioning S later
using some other, perhaps more appropriate, attribute. This
option isno longer available in the second situation, and the
choice of future attributes will be based on smaller subsets: S1
and S2. Yissentially, this leads to the same sort of problems as
those caused by the irrelevant values problemdiscussed in [2;
51.The details of how GID3* deas with this problem and
how only a subset of the values arc branched on is beyond the
scope of this paper (see [51 for details.)

3.1To Cutor not 10 Cut? That is the Question

Giventhe set S and a potential binary partition, 77, specified
on S by the given cut value 7" of attribute A, wc need to
decide whether or not to accept the partition. This problem
is naturaly formulated as a binary decision problem:accept

2One tree being “betler” that another in this context means that
itis smaller in size and thatits (empirically estimated) error rate is
lower. in [41 weaddress the meaning of “better” more formally. See
[5] for further details.
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Figure 2: DecisionIrees and Multi-interval Discretization.

or reject m.1.et H1"be the hypothesis that #4 induces if it
wereaccepted. That is, H1" isthe classifier that tests the value
of Aagainst 1" and them classifies examples that have value
less than 7' according to tbc examplesin E for which A-value
<7T. Similarly, let N7 represent the null hypothesis; that
isthe h ypothesis that would result if w7 Wet-c rejected. ‘1 ‘bus
NT would classify all examples according to the classes in
FE without examining the value of A. Since accept or reject
are the. only possible actions, one of them must be the correct
choice for thisSituat ion; the other isincorrect. Of course we
have no way of directly deciding which is correct.

1 etdabe the decision 1o accept the pal tition 77, andlet
dp representrejecting it. The set of possible decisions in this
situation is 1):{da,dx} and we have a binary decision
problem to solve. If wc assign acost to our taking the wrong
decision, then the expected cost associated with a decision
rule that selects between{d 4, dg}is expected to have cost:

B:  cll'rob{dA A HT}lcyProb{dr A NT}
-teppProb{ds A NT} +exProb{dp A HT)

where ¢;;and €22 represent the costs of making the. cotrect
choice, and ¢i2 and ¢;; arc the costs of making the wrong
decision. This isthe expected Bayes risk associated with
whatever decision rule is being used toselect one of {d 4,dR}.
The Bayes decision criterion, calls for selecting the decision
rule that minimizes the expected cost.

Since we donot know what values to assign to €12 and
€21, WC resor t to the uniform crmr cost assignment. If we
letey i e2- () and letepp:ear- 1, then mini-
mizing the Bayes risk reduces to a decision rule known as
Probabil it y-of- | irrorCriterion (1'1:C)[12] which calls for min-
imizing the probability of making the “wrong” decision. Sub-
sequently, it can be shown viaa simple derivation| 12] that the
Bayes decision criterion reduces to adopting the decision rule
which, given data set S, selects the. hypothesis 117’ for which
Prob{HT'|S} is maximum among the competing hypotheses
[12]. Wc refer tn this decision criterion as the Bayesian De-
cision Strategy.'T'his strategy is aso known as the maximum
a posteriori (MAP) criterion [ 12], which in turn isequivalent
toPlIC.

Jior our decision problem, the Bayesian decision strategy
(as well as MAP and PEC) calls for selecting the decision
d ¢ D that corresponds to the hypothesis with the maximal
probability given a data set S: thus WC should choose d 4
if and only if Prob{HT|8} > Prob{N7|S}. If wc had a
way of determining the abovetwo probabilities our problem
would bc solved: simply choose the hypothesis that has the
higher probability given the data, and Bayesian decision the-
ory guarantees that thisis the best (minimum risk) strategy.
Unfortunately, there isno easy way to compute these probabi -
ities directly. However, wc shall adopt an approach that will
allowusto indirectly estimate. which probability is greater.




3.2 The Minimum Description 1 .ength Principle

The minimum description length of an object iS definedto be
the minimum number of bits required to uniquely specify that
object out of the universe of al objects.

We shall show that in the case of our decision problem,
we can employ the Minimum Description 1 .ength Principle
(MD1J) to make. a guess at the hypothesis with the higher
probability, given a fixed set of examples. The MDI J
is a general principle that is intendedto encode the natu-
ral bias in science towards simpler theories that explain the
same body of data. The MD1.P was originail y i nt roduced
by Rissanen|17]and has later been adopted by others 114;
| 8]for use ininduction. We define it as defined in | 141:
Definition 3:  Given a set of competing hypotheses and a
set of data S, the minimum description length principle
(MD] .1') calls for selecting the hypothesis ' for which
MI ength(JIT) + MI ength(S|HT) is minimal among the
Set of hypotheses. M1 .ength(#7T") denotes the lengthof the
minimal possible encoding of H T, while M| .ength(S|HT)
is the length of the minimal encoding of the data given the
hypothesis.

1 ‘or convenience, we assume lengths are measuredin bits.
The encoding of the data given the hypothesis may be thought
of as encoding the data points that are the “exceptions” to the
hypothesis H7". If HT' fits the data exactly, then the latter
(cI'lll goesto zero.

The MDL.P principle is not necessarily calling for some-
thing different from tile decision criteria discussed earlier. It
can be easily shown that the MDI J and the Bayesian risk
minimization strategy (under the assumption of uniform err or
cost) arc theoretically related to cach other. 1°or lack of space
we omit tile derivation which simply consists of expanding
the expression for the number of bits needed to specify the
hypothesis I given the data S: - log,(Prob{H|S}), using
Bayes'rule. The final expression obtained is equivalent to
the MDLP, This will serve as motivation for adopting the
MDLY since it reduces the arbitrariness of our adopting it
over some other heuristic for deciding when to refrain from
further partitioning.

Based on our earlier arguments, if we had away of finding
the true minimal encoding length of hypotheses and of the data
given a hypothesis, then employing the MDLP for selecting
one of aset of competing hypotheses Ieads to choosing the
hypothesis with the maximum a posteriori probability (given
tile.data). Consequently, thisisequivalentto the PEC decision
criterion. This means that the. selected hypothesis will be
the one which minimizes the probability of having made the
wrong sclection (incision. However, in the physical world we
donothave access to the. probability distributions. Hence,
the MDL P isused as an estimate of cost, or a heuristic, for
distinguishing between hypotheses.

3.3 Ap plying the MD LP: A Coding Problem
Now the problen at hand is a coding problem. In our casc, the
decision problemis relatively simple. Theset of competing
hypotheses contains exactly two elements: {H7, N7'}. Wc
shall employ the formulation used by Quinlan and Rivest114]
where they used the MDLP in attribute selection in an attempt
to generate compact decision trees (see| 181 for acommentary
on [ 141).In our case, the problernis fortunatel y simpler.
Using the formulation of [14], the problem that needs to
be solvedis a communication problem. The goal is to con-

municate amethod (classifier), that will enable the receiver
to determine the class labels of the examples in the set. It is
assumed that ase nder has the entire set o f training examples,
while a receiver has the examples without their class labels.
The sender needs to convey the proper class label i ng of the ex-
ample set to the receiver. The sender must essentially choose
the shortest description for specifying the classes.

Coding the Null Theory N1': Inthecaseof N7, thesender
must simply transmit the classes of the examples in & in
sequence. The sender sends N messages, cach being a coded
class label (where N :[S|). To encode the classes of the
examples in S, we may use an optimal (e.g. Huffman coding)
algorithm [161 to produce code optimized for average code
length. Since we have to transmit the class for each example
in the set Ss multiplyin g the average code length Iby N gives
us the total costof transmitting the classes of the examples
in S. In addition, one needs to transmit tile’’ co(icb{ )ok”to
be used in decoding he classes. Transmitti ng the code book
consists of sending the code word asso ciated with each class.

Hence, if there are k classes the length of the code book is
estimated by (k. 1). Note that k is a constant that docs not
grow with N, so the cost of the code book is a small constant
overhead.

Coding the Partition H7': The cut point chosen to parti-
tion tile examples must be specified by the sender followed by

an encoding of the classes in each of tile two subsets. Speci -
{ying the cut value costs log, (N - 1) bits since we need only
specify one of the N - 1 examples in the sequence which the
cutvalue falls just before. (or after).

The classifier H7' corresponding to the binary partition,
ap, partitions the set S into subsets S and S>. What the
sender must transmit, then, is a specification of the.cat point
followed by the sequence of classes in Sy followed by the
classes in S, Again, all we are interested in determining is
the minimal average length code for the classes in Sy and S,
as we did in the case of encoding the classes in S. et and
1,be the minimal average code lengths (in bits) for the classes
in Sy and S, respectively. The cost of transmitt ing H7" along
with the datagiven H7'is

log, (N - 1)-1 |Si|- 1y -i

Sl bits.

We also need to transmit the code books for the. respecti ve
codings chosen for the classes in Syand S2. Unlike the case of
transmitting S where we knew that al k classes arc present, in
this case we must inform the recei ver which subset of classes
is present in cach of the two subsets S and S,, and then send
the respective code books. Since we know that our partition
is nontrivial, i.e. S17 527 0, we know that S, can have
any one of 2% - i possible subsets of the. k classes. Using a
lengthy derivation, it can be shown that

k!
G- 3 (B a2 w

[

is the number of possible partitions out of which we need
to specify one. Hence wc need log, (G) bits. Note that
log, (Ge) < 2log, (2)‘ - l) < 2k.

3.4 The Decision Criterion
in our quest for the “correct’” decisionregarding whether or not
to partition a given subset further, we appealed tothe M DI J .



Table 1: Details of the Data Sets Used.

Inturn, this gave us a coding problem to solve. The solution
isreadii y available from i nformation theory, cf. Huffman
coding. However, we are not interested in the actual minimal
code itsdf. The only thing we need to know is the average
length of the minimal code. The following theorem givesus
thisinformationdircctly anti in the general case.

Theorem 2 Given a source Of mcs.sages s with entropy
1 ' W(s), for” any e > (), there exists an optimal encoding of
the messages Ofs such that the average message code Jength
1, in bits, is such that Ent(s) <1 < Ent(s) -l c.
Proof: Sce Shannon’s Noiseless Coding Theorem in [9].11

Note that this thcorem requires that the entropy 1int(S)
be defined using logarithms to the base 2. In the. case of oar
simple communication problem, the source of messages is the
sender and the messages are the encoded classes. Theoremn 2
tells us, that “we can bring the average code word length{ as
close as we please to the entropy” of e source [91.

1.et 1 be the average length of the code chosen to represent
the classes in S Similarly, Iy and &2 arc the corresponding
average code lengths for Syand Sa. Putti ng ail the derived
costs together we obtain:

Cost(NT) = N- Ent(S) -1 k . Ent(S)
Cost(dIT) = log, (N - 1)+ |Sy]-

The M1 O1.P prescribes  accepting  the  partition iff
Cost(17) < Cost(NT'). Examine the condition under which
[Cost(NT) - Cost(HT)] > ():

0 < NEnS)-|S|.1n(Sy) -
- log, (N - 1)+ kEnt(S)
- k]]‘:nl(S]) - ky]‘:ll((S))
Now recall that the information gain of acut point is
Gain(A, 15 S) = Em(S) -E(A,7; s)

. }‘:Il((SQ)
- log, (3’“ -2)

S|
Ent(S) - |N En(S |ﬁl?] Iint(S,).

The above inequality, after dividing through by N, reducesto
) log, (N - 1) > A(A, T3 S)
G T, 9 - - -
ain(A, ) N N
where A(A, 74 9) =

log, (3% - - [RVER(S) - kiEn(Sy) - koEnt(S;)]

Data Set name examples | attributes | classes
Faulty operation data from the JPLL Deep Space Network anlennacontroller DSN 258 12 5
Problems in arcactive ion etching process (RIF) in semiconductor manu- Ql{t‘l 9 g i
facturing from }ughes Aircraft Compan e 4

& & pany -
The waveform domain described in [1] WVEFRM 150 21 3
Data obtained from aresponse surface of multiple response variables in a RSM1 00 3 a5
sclof wafer etching experiments conducied al Hughes ' : o
RSM 1 with classes mapped to only two values: “good” and “tract” RSM?2 300 3 2
Publicly available heal-[ discase medica data from an institute in Cleveland HEART 303 13 2
The glass types data from the USA Forensic Science Service “GLASS 214 9 6
The famous iris classification data used by R.A.Fisher (1936) IRIS 150 4 3
"The echocardiogram data of heart diseases from the Reed Institute of Miami TRCG 132 9 2

Ent(S1 ) 4 |5} - Iint(S?)
1 logy (3% - 2) + kiEnt(Sy) +kokint(Sy).

We arc now ready to stale our decision criterion for aceept-
ing or rejecting agiven partition based onthe MI)] ,1':

MDLPC Criterion: The partitioninduced by acut point
T for aset S of N examples is acceptediff

Gain(4, T; S) 2% (N D a4, Zj 5)

and it is rejected otherwise. ‘

Note thatthe quantities required to evaluate this criterion,
namely the information entropy of S, S, and S arc com-
puted by the cut point select ion algorithm as part of cut point
evaluation.

4 Empirical Evaluation

Wec compare four different decision strategies for deciding
whether or not to accept a partit ion. Yor each data set used,
we ran four variations of the algorithim using each of the
following criteria:

1. Never Cut:the original binary interval algorithm.

2. Always Cut:  aways accept acut unless all examples

have the same class or the same value for the attribute.

3. Random Cut :  accept or reject randomly based on

flipping a fair coin.

4 MDLP Cut: the derived MDLPC criterion.

The first t hree strategics represent S mple alternative decision
strategies that also cover the coat inuum of decision strategics
since the first two arc. the two extrema.

Wec used the data sets described in Table 1. Some of the.se.
were obt a ned from t he U.C.Irvine Machine 1 carning Repos-
itory and others from our own industrial applications of ma-
chi nc learning described in | 101, The data sets represent a
mixture of characteristics ranging from few classes with many
attributes to many classes with few attribute.s.

1 ‘or each data set, wc random1 y sampled atraining subset
and used the rest of the set for testing. | ‘or each dat a sc.( we
repeat cd the sampling procedure followed by generati ng the
(rccand testing it 10 ti mes. The results reported arcin terms
of tile average. number of leaves and percentage crmr rate on
classifying the test sets. The results are shown in Figure 3.
Note that there is no difference between the tree generate.d by
GID3* under the Never Cut strategy and the tree generated
by the ID3 algorithm, *1'bus, those columns in the charts may
be take.n to reflect 1D3’s performance. 1 ‘or case of compar-
i son, wc plot the results in terms of ratios of error rate and
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number of leaves of the various cut strategics to the MDLP
Cutstrategy. Note. that the improvements are generally sig-
nificant. The dataset RSM 1 proved a Little problematic for
the M 11.PC. One possible reason isthat the number of classes
islarge and the number of training examples is probably not
SO fficient tO make the recommendations of the MDLPC crite-
rion meaningful. Note that this hypothesis is consistent with
[he. fact that performance dramatically improved for the set
RSM?2 which is the same data set but with only 1wo classes.

5 Conclusion

We have prescnted results regarding cont i nuous-valued at-
tribute discretization using the information entropy minimiza-
tionheuristic. The results point out desirable behavior on the.
part of the heuristic which in turn serves as further theoreti-
calsupport for the meritof the information entropy heuristic.
In addition, the efficiency of the cut point selection heuristic
can beincreased without changing the final outcome of the
algorithm in any way. Classification learning algorithms that
uscthe information entropy minimization heuristic for select-
i ng cutpoints can benefit from these results. Wc also used
the results as a basis for generalizing the algorithm to mul-
tiple interval discretization. Wec derive a decision criterion
based on iNformation and decision theoretic notions to decide
whether to split agiven interval further. Coupled with formal
arguments supporting this criterion, wc presented empirical
results showing that multiple interval discretization algorithm
indeed allows us to construct better decision trees from the
same data.
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